various embodiments, modulator 107 suitably applies the signals to the appropriate electrodes 112A-D via any drive circuitry 109, which includes any sort of scaling amplifier, multiplexer, switch to any current or voltage source, charge transfer device, controlled impedance, and/or the like. Although FIG. 1 shows a single driver circuit 109 interconnecting modulator 107 and sensing region 101 in a serial fashion, in practice drive circuitry 109 will typically include multiple amplifiers, multiple drivers and/or other signal paths providing parallel connections between modulator 107 and the various electrodes 112 within sensing region 101 to permit multiple sensing channels 113 to be driven by modulated electrodes 112 simultaneously with the same or different signals. [0030] As noted above, modulation signals 110A-D are provided to electrodes 112A-D in sensing region 101, and resultant signals 116 from receiving electrode 114 are provided to a suitable demodulator 117. A scaling amplifier, multiplexer, filter, discriminator, comparator, and/or other receiving circuitry 115 may be provided as well to shape received signals 116. Demodulator 117 is any circuit or other module capable of demodulating the output 116 of sensing region 101 to identify any electrical effects produced by object 121. Demodulator 117 may also include and/or communicate with a demodulation filter, such as any suitable digital or analog low-pass or band-pass filter, as well as any conventional analog-to-digital converter (ADC). In various embodiments, demodulator 117 receives carrier signal 111 and/or the phase shifted versions of the distinct digital codes 106 to allow demodulation of both signals. Alternatively, demodulator 117 provides analog demodulation of carrier signal 111 and provides the resultant signals to controller 102 and/or receiving circuitry 115 for subsequent processing. Similarly, the demodulation function represented by module 117 in FIG. 1 may be logically provided in hardware, software, firmware and/or the like within controller 102 and/or another component, thereby removing the need for a separately-identifiable demodulation circuit 117. [0031] During the operation of sensor 100, any number of distinct digital codes are produced by code generation module 104 and modulated with a carrier frequency to create a set of modulation signals 112A-D applied to any number of electrodes 112A-D within sensing region 101. The position of object 121 with respect to sensing region 101 electrically affects one or more output signals 116 provided from sensing region 101. By demodulating the resultant signals 116, the electrical effects can be identified and subsequently processed by controller 102 or the like to determine a position-based attribute relating to object 121. By modulating the electrodes with an appropriate digital code, the narrower sensing frequency for the sensor is effectively spread across multiple frequencies, thereby improving noise rejection. Moreover, the use of code division multiplexing allows each of the modulation signals 110A-D to be applied simultaneously, thereby reducing or eliminating the need for separate time domain switching and control in many embodiments. The electrical effects identified from sensing region 101 using spread spectrum techniques may be further processed by controller 102 and/or another processing device as appropriate. [0032] With reference now to FIG. 2, an exemplary process 200 for detecting a position-based attribute of an object with respect to a sensing region 101 suitably includes the broad steps of producing a set of distinct digital codes for modulation signals 110A-D (step 201), demodulating each of the response signals 116 that result from the application of modulation signals 110A-D (steps 204, 206), and determining one or more position-based attributes of object 121 from the electrical effects identified within the response signals 116 (step 208). In various further embodiments, the particular digital codes generated in step 202 may be modified (step 210) to reduce the effects of noise, reducing interference on other devices caused by this device, or for any other purpose. Additional processing may also be performed (step 212), such as single or multi-object processing, rejection of undesired image data, and/or the like. [0033] Although flowchart shown in FIG. 2 is intended to show the various logical steps included in an exemplary process 200 rather than a literal software implementation, some or all of the steps in process 200 may be stored in memory 103 and executed by controller 102 alone and/or in conjunction with other components of sensor 100 (e.g. code generation module 104, modulator 107, demodulator 117 and/or the like). The various steps may be alternately stored within any digital storage medium, including any digital memory, transportable media (e.g. compact disk, floppy disk, portable memory and/or the like), magnetic or optical media, and/or the like. The various steps of process 200 may be applied in any temporal order, or may be otherwise altered in any manner across a wide array of alternate embodiments. Further, the various steps shown in FIG. 2 could be combined or otherwise differently organized in any [0034] As noted above, the distinct digital codes 106 used to create modulation signals 110A-D may be produced in any manner (step 201), such as by any type of hardware or software logic represented by code generation module 104 in FIG. 1. Any number of feedback shift registers, for example, can be configured in a maximum length sequence (MLS) or the like to generate a pseudo-random digital code of any desired length that could be readily applied in a variety of phases and/or sums as distinct code sequences to the various modulation signals 110A-D. The resulting sequence of binary codes 106 emanating from parallel shift registers is generally spectrally flat, with the exception of a minimal DC term. In an alternate embodiment, a MLS or other routine for generating digital codes 106 may be simulated in software executing within controller 102, or elsewhere as appropriate. In still other embodiments, codes 106 are generated prior to use and stored in a lookup table or other data structure in memory 103, or the like. In various alternate but equivalent embodiments, controller 102 may directly generate or retrieve codes 106 and/or may produce them by directing the operation of a separate code generation module 104 or the like. As noted above, the particular codes may be generated in any manner. A digital bit sequence may be simply shifted in phase, for example, to create multiple distinct codes. Alternatively, distinct codes can be computed from other codes using a variety of methods including summation, exclusive-or, and multiplication, and/or other techniques of generating high dimensionality random and pseudo-random sequences. Code generation techniques based upon exclusive-or or multiplication operations may provide an additional benefit of generating linear combinations that may be useful in some embodiments.